Tuning adhesion failure strength for tissue-specific applications.
نویسندگان
چکیده
Soft tissue adhesives are employed to repair and seal many different organs, which range in both tissue surface chemistry and mechanical challenges during organ function. This complexity motivates the development of tunable adhesive materials with high resistance to uniaxial or multiaxial loads dictated by a specific organ environment. Co-polymeric hydrogels comprising aminated star polyethylene glycol and dextran aldehyde (PEG:dextran) are materials exhibiting physico-chemical properties that can be modified to achieve this organ- and tissue-specific adhesion performance. Here we report that resistance to failure under specific loading conditions, as well as tissue response at the adhesive material-tissue interface, can be modulated through regulation of the number and density of adhesive aldehyde groups. We find that atomic force microscopy (AFM) can characterize the material aldehyde density available for tissue interaction, and in this way enable rapid, informed material choice. Further, the correlation between AFM quantification of nanoscale unbinding forces with macroscale measurements of adhesion strength by uniaxial tension or multiaxial burst pressure allows the design of materials with specific cohesion and adhesion strengths. However, failure strength alone does not predict optimal in vivo reactivity. Thus, we demonstrate that the development of adhesive materials is significantly enabled when experiments are integrated along length scales to consider organ chemistry and mechanical loading states concurrently with adhesive material properties and tissue response.
منابع مشابه
Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior
Objective(s): Fabrication of scaffolds with improved mechanical properties and favorable cellular compatibility is crucial for many tissue engineering applications. This study was aimed to improve mechanical and biological properties of polycaprolactone (PCL), which is a common biocompatible and biodegradable synthetic polymer in tissue engineering. Nanofibrillated chitosan (NC) was used as a n...
متن کاملManufacturing a Biomimetic Biorecator in Cardiac Tissue Engineering
Introduction: The direct approach of cardiac tissue engineering is to mimic the natural tissue of heart, considering the significant role of scaffolding and mechanical simulation. Methods: To achieve this purpose, a composite Polycaprolactone (PCL)/Gelatin electrospun scaffold with a ratio of 70:30 and with the most similarities to the cardiac extracellular matrix was fabricated with aligned ...
متن کاملBiomechanical Comparison Between Bashti Bone Plug Technique and Biodegradable Screw for Fixation of Grafts in Ligament surgery
Background: Ligament reconstruction is a common procedure in orthopedic surgery. Although several popular techniques are currently in use, new methods are proposed for secure fixation of the tendon graft into the bone tunnel. Purposes: We sought to introduce our new technique of Bashti bone plug for fixation of soft tissue graft in anterior cruciate ligament (ACL) reconstruction and to compar...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملTowards an in vitro model mimicking the foreign body response: tailoring the surface properties of biomaterials to modulate extracellular matrix
Despite various studies to minimize host reaction following a biomaterial implantation, an appealing strategy in regenerative medicine is to actively use such an immune response to trigger and control tissue regeneration. We have developed an in vitro model to modulate the host response by tuning biomaterials' surface properties through surface modifications techniques as a new strategy for tis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 7 1 شماره
صفحات -
تاریخ انتشار 2011